Discrimination Between Cervical Cancer Cells and Normal Cervical Cells Based on Longitudinal Elasticity Using Atomic Force Microscopy
نویسندگان
چکیده
The mechanical properties of cells are considered promising biomarkers for the early diagnosis of cancer. Recently, atomic force microscopy (AFM)-based nanoindentation technology has been utilized for the examination of cell cortex mechanics in order to distinguish malignant cells from normal cells. However, few attempts to evaluate the biomechanical properties of cells have focused on the quantification of the non-homogeneous longitudinal elasticity of cellular structures. In the present study, we applied a variation of the method of Carl and Schillers to investigate the differences between longitudinal elasticity of human cervical squamous carcinoma cells (CaSki) and normal cervical epithelial cells (CRL2614) using AFM. The results reveal a three-layer heterogeneous structure in the probing volume of both cell types studied. CaSki cells exhibited a lower whole-cell stiffness and a softer nuclei zone compared to the normal counterpart cells. Moreover, a better differentiated cytoskeleton was found in the inner cytoplasm/nuclei zone of the normal CRL2614 cells, whereas a deeper cytoskeletal distribution was observed in the probing volume of the cancerous counterparts. The sensitive cortical panel of CaSki cells, with a modulus of 0.35~0.47 kPa, was located at 237~225 nm; in normal cells, the elasticity was 1.20~1.32 kPa at 113~128 nm. The present improved method may be validated using the conventional Hertz-Sneddon method, which is widely reported in the literature. In conclusion, our results enable the quantification of the heterogeneous longitudinal elasticity of cancer cells, in particular the correlation with the corresponding depth. Preliminary results indicate that our method may potentially be applied to improve the detection of cancerous cells and provide insights into the pathophysiology of the disease.
منابع مشابه
Finite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy
The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...
متن کاملDetection of cancerous cervical cells using physical adhesion of fluorescent silica particles and centripetal force.
Here we describe a non-traditional method to identify cancerous human cervical epithelial cells in a culture dish based on physical adhesion between silica beads and cells. It is a simple optical fluorescence-based technique which detects the relative difference in the amount of fluorescent silica beads physically adherent to surfaces of cancerous and normal cervical cells. The method utilizes ...
متن کاملTowards nonspecific detection of malignant cervical cells with fluorescent silica beads.
To date, the methods for detection of cancer cells are mostly based on traditional techniques used in biology, such as visual identification of malignant changes, cell-growth analysis, specific ligand-receptor labeling, or genetic tests. Despite being well developed, these methods are either insufficiently accurate or require a lengthy complicated analysis. A search for alternative methods for ...
متن کاملNanomechanical Characteristics of Cervical Cancer and Cervical Intraepithelial Neoplasia Revealed by Atomic Force Microscopy
BACKGROUND Understanding the biological features and developmental progress of cervical cancer is crucial for disease prevention. This study aimed to determine the nanomechanical signatures of cervical samples, ranging from cervicitis to cervical carcinomas, and to investigate the underlying mechanisms. MATERIAL AND METHODS Forty-five cervical biopsies at various pathological stages were subjec...
متن کاملEffects of cold atmospheric plasma on viability of breast (MDA-MB-231) and cervical (Hela) cancer cells
Introduction: There are many reports published about the use of cold atmospheric plasma in cancer treatment recently. In this way, the selective effects of cold plasma on the breast (MDA-MB-231) and cervical (Hela) cancer cells were studied as a new cancer treatment method. Materials and Methods: In this study, cold atmospheric pressure plasma was generated using a plasma jet reactor and also o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015